Calculating Earth's Escape Velocity

Alejandro Mascort

November 4, 2024

Calculate the escape velocity required to leave Earth's gravitational field.

Calculate the escape velocity required for an object to leave Earth’s gravitational field and escape into space.

Given Information

  • Mass of Earth (M): 5.97×10245.97 \times 10^{24} kg
  • Radius of Earth (R): 6.37×1066.37 \times 10^6 m
  • Gravitational constant (G): 6.67×10116.67 \times 10^{-11} N·m²/kg²
Show Solution

As we know the gravitation formula is:

F=G×M×mR2F = \frac{G \times M \times m}{R^2}

Where:

  • FF is the gravitational force between two objects,
  • GG is the gravitational constant,
  • MM is the mass of the first object,
  • mm is the mass of the second object, and
  • RR is the distance between the centers of the two objects.

We can calculate the potential energy formula integrating the force formula:

U=Fdr=G×M×mr2dr=G×M×mrU = -\int F \cdot dr = -\int \frac{G \times M \times m}{r^2} \cdot dr = \frac{G \times M \times m}{r}

The potential energy at the surface of the Earth is:

U=G×M×mRU = \frac{G \times M \times m}{R}

We have to have at least a kinetic energy equal to the potential energy to escape the Earth’s gravitational field. The kinetic energy is:

K=12mv2K = \frac{1}{2} m v^2

The escape velocity is the velocity at which the kinetic energy is equal to the potential energy:

12mve2=G×M×mR\frac{1}{2} m v_e^2 = \frac{G \times M \times m}{R}

ve=2×G×MRv_e = \sqrt{\frac{2 \times G \times M}{R}}

Substitute the given values (showing units):

ve=2×(6.67×1011Nm²/kg²)×(5.97×1024kg)6.37×106mv_e = \sqrt{\frac{2 \times (6.67 \times 10^{-11} \, \text{Nm²/kg²}) \times (5.97 \times 10^{24} \, \text{kg})}{6.37 \times 10^6 \, \text{m}}}

ve=2×3.99×1014Nm²/kg6.37×106mv_e = \sqrt{\frac{2 \times 3.99 \times 10^{14} \, \text{Nm²/kg}}{6.37 \times 10^6 \, \text{m}}}

ve=7.98×1014Nm/kg6.37×106mv_e = \sqrt{\frac{7.98 \times 10^{14} \, \text{Nm/kg}}{6.37 \times 10^6 \, \text{m}}}

ve=1.25×108m²/s²v_e = \sqrt{1.25 \times 10^8 \, \text{m²/s²}}

ve=1.12×104m/sv_e = 1.12 \times 10^4 \, \text{m/s}

Therefore, the escape velocity required for an object to leave Earth’s gravitational field and escape into space is approximately 11,200m/s11,200 \, \text{m/s} or 11.2km/s11.2 \, \text{km/s}.