Property of the n-th Root of a Positive Convergent Sequence

Alejandro Mascort

October 24, 2024

This is a proof that the n-th root of a positive convergent sequence is also convergent.

Be kR,k>1k \in \mathbb{R}, k > 1, and (an)R+(a_n) \subset \mathbb{R}^+ a convergent sequence with limnan=aR+\lim_{n \to \infty} a_n = a \in \mathbb{R}^+. We want to prove that the sequence (ank)(\sqrt[k]{a_n}) is convergent and that limnann=(limnann)\lim_{n \to \infty} \sqrt[n]{a_n} = (\sqrt[n]{\lim_{n \to \infty} a_n}).

First of all, let’s prove that (ann)(\sqrt[n]{a_n}) is convergent, as (an)(a_n) is convergent, we know that for all ϵ>0\epsilon > 0 there exists an n0Nn_0 \in \mathbb{N} such that for all nNn \in \mathbb{N} with nn0n \geq n_0 we have that ana<ϵ|a_n - a| < \epsilon. We can find a value MM such that 0<M<a0 < M < a, and also we can look for an n1Nn_1 \in \mathbb{N} such that for all nNn \in \mathbb{N} with nn1n \geq n_1 we have that an>Ma_n > M.

Now, let’s consider the sequence (ank)(\sqrt[k]{a_n}), we know that ana=(ank)k(ak)k=(ankak)((ank)k1+(ank)k2ak++(ak)k1)a_n - a = (\sqrt[k]{a_n})^k - (\sqrt[k]{a})^k = (\sqrt[k]{a_n} - \sqrt[k]{a})((\sqrt[k]{a_n})^{k-1} + (\sqrt[k]{a_n})^{k-2}\sqrt[k]{a} + \ldots + (\sqrt[k]{a})^{k-1}). Then we can operate as follows:

ankak=ana(ank)k1+(ank)k2ak++(ak)k1 \sqrt[k]{a_n} - \sqrt[k]{a} = \frac{a_n - a}{(\sqrt[k]{a_n})^{k-1} + (\sqrt[k]{a_n})^{k-2}\sqrt[k]{a} + \ldots + (\sqrt[k]{a})^{k-1}}

We know that Mk<ank<ak\sqrt[k]{M} < \sqrt[k]{a_n} < \sqrt[k]{a}, then we can say that Mk2<ank2<ak2\sqrt[k]{M}^{2} < \sqrt[k]{a_n}^{2} < \sqrt[k]{a}^{2}, and so on, until we get that Mkk1<ankk1<akk1\sqrt[k]{M}^{k-1} < \sqrt[k]{a_n}^{k-1} < \sqrt[k]{a}^{k-1}. So we can operate as follows:

1(ank)k1+(ank)k2ak++(ak)k1<1(Mk)k1+Mk)k1++(Mk)k1=1kMkk1 \frac{1}{(\sqrt[k]{a_n})^{k-1} + (\sqrt[k]{a_n})^{k-2}\sqrt[k]{a} + \ldots + (\sqrt[k]{a})^{k-1}} < \frac{1}{(\sqrt[k]{M})^{k-1} + \sqrt[k]{M})^{k-1} + \ldots + (\sqrt[k]{M})^{k-1}} = \frac{1}{k\sqrt[k]{M}^{k-1}}

Then we can say that ankak=ana(ank)k1+(ank)k2ak++(ak)k1ϵkMkk1 \sqrt[k]{a_n} - \sqrt[k]{a} = \frac{a_n - a}{(\sqrt[k]{a_n})^{k-1} + (\sqrt[k]{a_n})^{k-2}\sqrt[k]{a} + \ldots + (\sqrt[k]{a})^{k-1}} \leq \frac{\epsilon}{k\sqrt[k]{M}^{k-1}}

As (ana)(a_n - a) is a null sequence, we can say that (ank)(\sqrt[k]{a_n}) is convergent.

Glossary

Bibliography

  1. M. Spivak, A. (2008). Calculus. Reverté.
  2. Adams, R. A., (2009). Calculus. Pearson Addison Wesley.
  3. Delgado Pineda, M. (2024). Análisis Matemático: Cálculo Diferencial en una Variable. Sanz y Torres.

Further Readings

  1. Properties of convergent sequences