Monotone Subsequence Theorem

Alejandro Mascort

October 29, 2024

This is a proof of the Monotone Subsequence Theorem.

The Monotone Subsequence Theorem states that every (an)R(a_n) \subset \mathbb{R} has a monotone subsequence. A sequence is said to be monotone if it is either increasing or decreasing.

Let’s prove the Monotone Subsequence Theorem:

Suppose a sequence A={iNai>aji,jN with i<j}A = \{ i \in \mathbb{N} | a_i > a_{j} \forall i,j \in \mathbb{N} \text{ with } i < j \}

If AA is a countable set, then be n1=min(A)n_1 = min(A) and n2=min(A{n1})n_2 = min(A \setminus \{n_1\}). We can continue this way to get a subsequence an1,an2,an3,...a_{n_1}, a_{n_2}, a_{n_3}, ... that is strictly decreasing as an1>an2>an3>...a_{n_1} > a_{n_2} > a_{n_3} > ....

If AA is a finite set, then be n1=min(NA)n_1 = min(\mathbb{N} \setminus A), then exists n2>n1n_2 > n_1 such that an2>an1a_{n_2} > a_{n_1}. We can continue this way to get so an1<an2<an3<...<ank>... a_{n_1} < a_{n_2} < a_{n_3} < ... < a_{n_k} > .... So, the sequence {an1,an2,an3,...,ank}\{a_{n_1}, a_{n_2}, a_{n_3}, ..., a_{n_k} \} is a strictly increasing subsequence.

Therefore, every real sequence has a monotone subsequence.

Glossary

Bibliography

  1. Spivak, M. (2008). Calculus. Reverté.
  2. Adams, R. A. (2009). Calculus. Pearson Addison Wesley.
  3. Delgado Pineda, M. (2024). Análisis Matemático: Cálculo Diferencial en una Variable. Sanz y Torres.

Further Readings

  1. Knopp, K. (1990). Theory and Application of Infinite Series. Dover Publications.
  2. Apostol, T. M. (1981). Mathematical Analysis. Addison-Wesley.
  3. Monotone Convergence Theorem