Closure of a Set

Alejandro Mascort

October 21, 2024

The closure of a set is the union of the interior of the set and the boundary of the set.

For a set ARA \subset \mathbb{R}, and xRx \in \mathbb{R}, we say that xx is an adherent point of AA if for any ϵ>0\epsilon > 0, the interval (xϵ,x+ϵ)(x - \epsilon, x + \epsilon) contains a point of AA. The set of all adherent points of AA is called the closure of AA, denoted by Adh(A)\text{Adh}(A).

As we know, if iRi \in \mathbb{R} is an interior point of AA, then there exists ϵ>0\epsilon > 0 such that (iϵ,i+ϵ)A(i - \epsilon, i + \epsilon) \subset A. Thus, ii is an adherent point of AA. Also, if bRb \in \mathbb{R} is a boundary point of AA, then for any ϵ>0\epsilon > 0, the interval (bϵ,b+ϵ)(b - \epsilon, b + \epsilon) contains a point of AA, so bb is an adherent point of AA.

The set of interior points of AA is denoted by Int(A)\text{Int}(A), the set of boundary points of AA by Bd(A)\text{Bd}(A), and the set of exterior points of AA by Ext(A)\text{Ext}(A).

We also know that R=Int(A)Bd(A)Ext(A)\mathbb{R} = \text{Int}(A) \cup \text{Bd}(A) \cup \text{Ext}(A), so let’s check that any point eExt(A)e \in \text{Ext}(A) is not an adherent point of AA.

Let eExt(A)e \in \text{Ext}(A), then there exists ϵ>0\epsilon > 0 such that (eϵ,e+ϵ)Ext(A)(e - \epsilon, e + \epsilon) \subset \text{Ext}(A). Thus, (eϵ,e+ϵ)A=(e - \epsilon, e + \epsilon) \cap A = \emptyset, meaning ee is not an adherent point of AA.

Finally, we can prove that Adh(A)=Int(A)Bd(A)\text{Adh}(A) = \text{Int}(A) \cup \text{Bd}(A). Let xAdh(A)x \in \text{Adh}(A), then for any ϵ>0\epsilon > 0, the interval (xϵ,x+ϵ)(x - \epsilon, x + \epsilon) contains a point of AA. If xInt(A)x \in \text{Int}(A), then there exists ϵ>0\epsilon > 0 such that (xϵ,x+ϵ)A(x - \epsilon, x + \epsilon) \subset A, so xInt(A)x \in \text{Int}(A). If xBd(A)x \in \text{Bd}(A), then for any ϵ>0\epsilon > 0, the interval (xϵ,x+ϵ)(x - \epsilon, x + \epsilon) contains a point of AA, so xBd(A)x \in \text{Bd}(A).

Glossary

Bibliography

  1. M. Spivak, A. (2008). Calculus. Reverté.
  2. Adams, R. A., (2009). Calculus. Pearson Addison Wesley.
  3. Delgado Pineda, M. (2024). Análisis Matemático: Cálculo Diferencial en una Variable. Sanz y Torres.

Further Readings

  1. Closure of a Set
  2. Closed sets, closures, and density